

# Lever



| Applications in Design & Engineering: Simple Machines | Student Engineering Workbook |  |  |
|-------------------------------------------------------|------------------------------|--|--|
| Team Members:                                         | Total Points                 |  |  |
| 1 3                                                   | Workbook:                    |  |  |

2.\_\_\_\_\_

Match the key terms that are listed in the word bank with the correct definition. Write the correct letter in the space provided.

4.\_\_\_\_\_

- 1. \_\_\_\_\_ The amount a machine multiplies force.
- 2. \_\_\_\_\_ Using a force to move an object a distance.
- **3.** \_\_\_\_\_ A simple machine consisting of a rigid beam that pivots on a fulcrum. It is used to redirect motion, increase output speed, or create mechanical advantage.
- 4. \_\_\_\_\_ A force applied to a machine to do work.
- 5. \_\_\_\_\_ The object or weight being moved or lifted.
- 6. \_\_\_\_\_ A push or a pull.
- 7. \_\_\_\_\_ The point or support on which a lever pivots.
- **8.** \_\_\_\_\_ A device that transmits or modifies force or motion.
- 9. \_\_\_\_\_ The mechanical advantage gained by using a lever.

#### Key Terms

Challenge: ...... /30 pts

- A. Simple Machine
- B. Force
- C. Lever
- **D.** Work
- E. Mechanical Advantage
- F. Leverage
- G. Effort
- H. Load
- I. Fulcrum





#### **Elements of a Lever**

Identify the correct element in the spaces provided.

10. \_\_\_\_\_ 11. \_\_\_\_\_



#### Purposes of a Lever

List the three purposes of a lever in the spaces provided.

| 12. | <br> |
|-----|------|
| 13. | <br> |
| 14. | <br> |

#### **Types of Levers**

Review the figures below, then write the correct type of lever in the spaces provided.



## **Build and Modify**

Place a check in the boxes below as the team completes each step.

- **18.** Build, test, and modify a First Class Lever
- **19.** Build, test, and modify a Second Class Lever
- **20.** Build, test, and modify a Third Class Lever





## **Understanding Mechanical Advantage**

Fill in the blanks to complete the statements below.

21. Mechanical Advantage exists when the \_\_\_\_\_\_ force of a machine is \_\_\_\_\_\_

than the \_\_\_\_\_\_ force that was applied to it.

22. For a machine to create mechanical advantage, it must trade increased time or \_\_\_\_\_\_ for

reduced effort.

#### Calculating Mechanical Advantage in a Lever

Use the formulas to solve the problems below.







**Design & Engineering Challenge** Follow each step in the design & engineering process to develop a solution to the challenge. Place a check in the box as each step is completed. Fill in the blanks when necessary.

| 1. | Identify The Challenge                                                                                                |                           |
|----|-----------------------------------------------------------------------------------------------------------------------|---------------------------|
|    | Challenge:                                                                                                            |                           |
|    | Sub-Challenge:                                                                                                        |                           |
|    | Sub-Challenge:                                                                                                        |                           |
|    | Sub-Challenge:                                                                                                        |                           |
|    | Review specifications.                                                                                                | Identify The<br>Challenge |
| 2. | Brainstorm Ideas & Solutions                                                                                          |                           |
|    | Discuss design ideas. Explain The                                                                                     | Brainstorm<br>Ideas &     |
|    | Consider building components and cost.                                                                                | Engineering               |
| 3. | Build A Prototype                                                                                                     | Process                   |
|    | Build a working prototype of the design.                                                                              | Build A<br>Prototype      |
| 4. | Test & Improve The Design                                                                                             |                           |
|    | Test & improve the design for performance and consistency.                                                            |                           |
|    | New challenge discovered:                                                                                             |                           |
|    | Review grading rubric and design specifications.                                                                      |                           |
|    | Consider ways to reduce cost.                                                                                         |                           |
| 5. | Explain The Design                                                                                                    |                           |
|    | Prepare to demonstrate and present the design to others.                                                              |                           |
|    | Review project grading rubric.                                                                                        |                           |
|    | Explain any unique design features that were included.                                                                |                           |
|    | Describe at least one new problem/challenge discovered during Step 4 (Tes and how the team redesigned a new solution. | t & Improve The Design)   |





#### **Challenge Evaluation**

When teams have completed the design & engineering challenge, it should be presented to the teacher and classmates for evaluation. Teams will be graded on the following criteria:

- **O** Specifications: Does the design meet all specifications as stated in the design brief?
- O Performance: How well does the design work? Does it function consistently?
- **Team Collaboration:** How well did the team work together? Can each student descibe how they contributed?
- Design Quality/Aesthetics: Is the design of high quality? Is it structurally strong, attractive, and well proportioned?
- **Material Cost:** What was the total cost of the design? Was the team able to stay on or under budget?
- **O** Presentation: How well did the team communicate all aspects of the design to others?

| Grading Rubric                | Advanced<br>5 Points                  | Proficient<br>4 Points               | Partially Proficient<br>3 Points  | Not Proficient<br>0 Points            |
|-------------------------------|---------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|
| Specifications                | Meets all specifications              | Meets most specifications            | Meets some specifications         | Does not meet specifications          |
| Performance                   | Design performs consistently well     | Design performs well often           | Design is partially functional    | Design does<br>not work               |
| Team Collaboration            | Every member of team contributed      | Most members of team contributed     | Some members of team contributed  | Team did not<br>work together         |
| Design Quality/<br>Aesthetics | Great design/<br>aesthetics           | Good design/<br>aesthetics           | Average design/<br>aesthetics     | Poor design/<br>aesthetics            |
| Material<br>Cost              | On Budget<br>(\$140 or Less)          | Slightly Over<br>Budget (\$141-145)  | Over Budget<br>(\$146-155)        | Significantly Over<br>Budget (\$156+) |
| Presentation                  | Great presentation/<br>well explained | Good presentation/<br>well explained | Poor presentation/<br>explanation | No presentation/<br>explanation       |
| Points                        |                                       |                                      |                                   |                                       |
| Total Points                  |                                       |                                      |                                   | /30                                   |